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Problem 1. (10 points) For each of the following functions, circle what
kind of singularity it has at z = 0, and compute the residue at z = 0.

(a) f(z) =
1

z sin(z)
.

Removable Pole Essential

(b) f(z) =
1

sin(1/z)
.

Removable Pole Essential

Solution. (a) f(z) has an pole at z = 0. To see this, we note that

lim
z→0

z2f(z) = lim
z→0

z2

z sin(z)
= 1,

so in fact, f(z) has a pole of order 2. The residue can be computed
using the derivative formula that we often use, or alternatively using
the power series for sin z. Thus

1

z sin(z)
=

1

z

(
z − z3

6
+ · · ·

)
=

1

z2
· 1

1− z2

6
+ · · ·

=
1

z2
·
(
1 +

z2

6
+ · · ·

)
=

1

z2
+

1

6
+ · · · .

Hence

Res

[
1

z sin(z)
, 0

]
= 0.

But the easiest way to compute the residue is to note that f(z) =
f(−z), i.e., the function f(z) is even, so in its Laurent expansion

∞∑
k=−∞

ckz
k,

we have ck = 0 for every odd k. In particular, we have c−1 = 0, so the
residue is 0.
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(b) f(z) has an essential singularity at z = 0. We can see this by
observing that limz→0 z

mf(z) does not exist for any integer m ≥ 0. To
ease notation, let w = 1/z, so we’re looking at

f(w) =
1

sin(w)
.

If we write f(w) as a Laurent series in w, then the residue is the
coefficient of w. Thus

f(w) =
1(

w − w3

6
+ · · ·

)
=

1

w
· 1

1− w2

6
+ · · ·

=
1

w
·
(
1 +

w2

6
+ · · ·

)
=

1

w
+

w

6
+ · · ·

Thus the Laurent series of f(z) looks like

f(z) = z +
1

6z
+

a

z3
+

b

z5
+ · · ·

so

Res

[
1

sin(1/z)
, 0

]
=

1

6
.

Problem 2. (15 points) Compute the values of each of the following
integrals.

(a)

∫
|z|=1

e3z

z3
dz.

(b)

∫
|z|=1

1

z(ez − 1)
dz.

(c)

∫
γ

z dz, where γ is the line segment from 0 to 1 + i.
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Solution. (a) There is a one pole at z = 0, and it is a pole of order 3.
The residue theorem gives

1

2πi

∫
|z|=1

e3z

z2
dz = Res

[
e3z

z2
, 0

]
= Res

[
1

z3

(
1 + 3z +

(3z)2

2!
+

(3z)3

3!
+ · · ·

)
, 0

]
= Res

[
1

z3
+

3

z2
+

9

2z
+

9

2
+ · · · , 0

]
=

9

2
.

So ∫
|z|=1

e3z

z2
dz = 9πi.

(b) Again there is one pole at z = 0, but this time it is a pole of
order 2. Letting f(z) = 1

z(ez−1)
, we have

Res
[
f(z), 0

]
= lim

z→0

d

dz

(
z2f(z)

)
= lim

z→0

d

dz

(
z

ez − 1

)
= lim

z→0

(ez − 1)− zez

(ez − 1)2
.

One way to proceed now is to use L’Hopital’s rule a couple of times.
An easier(?) way is to use the Taylor series expansion of ez. Thus

ez − 1− zez

(ez − 1)2
=

(
1 + z + z2

2
+ z3

6
+ · · ·

)
− 1− z

(
1 + z + z2

2
+ z3

6
+ · · ·

)
(
z + z2

2
+ z3

6
+ · · ·

)2
=

(
z2

2
+ z3

6
+ · · ·

)
−
(
z2 + z3

2
+ z4

6
+ · · ·

)
z2 + z3 + · · ·

=
− z2

2
+ · · ·

z2 + · · ·
.

So the limit as z → 0 is −1
2
. Therefore∫

|z|=1

1

z(ez − 1)
dz = 2πiRes

[
1

z(ez − 1)
, 0

]
= 2πi ·

(
−1

2

)
= −πi.
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(c) This line integral needs to be done directly from the definition. The
curve γ is parametrized by

z(t) = (1 + i)t for 0 ≤ t ≤ 1.

So ∫
γ

z dz =

∫ 1

0

(1 + i)t d
(
(1 + i)t

)
=

∫ 1

0

(1− i)t (1 + i) dt

= 2

∫ 1

0

t dt

= 2 · 1
2

= 1.

Problem 3. (10 points) Use residue theory to compute the value of
the definite integral ∫ ∞

−∞

x2

(x2 + 1)2
dx.

(I expect you to use complex analysis for this problem, although it
can also be done using continued fractions as you learned in first-year
calculus.)

Solution. Let

f(z) =
z2

(z2 + 1)2
,

and let

DR =
{
reiθ : −R < r < R and 0 < θ < π

}
.

(This is the usual half-disk in the upper half-plane.) The function f(z)
has one pole in DR, namely z = i, and it’s a double pole, since

f(z) =
z2

(z2 + 1)2
=

z2

(z + i)2(z − i)2
.
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The residue at z = i is

Res
[
f(z), i

]
= lim

z→i

d

dz

(
(z − i)2f(z)

)
= lim

z→i

d

dz

(
z2

(z + i)2

)
= lim

z→i
2

(
z

z + i

)
d

dz

(
z

z + i

)
= lim

z→i
2

(
z

z + i

)(
i

(z + i)2

)
= 2 · i

2i
· i

−4

= − i

4
.

So the residue theorem says that∫
∂DR

f(z) dz = 2πiRes
[
f(z), i

]
=

π

2
.

Let LR be the line segment −R ≤ x ≤ R, and let ΓR be the semicircle
of radius R in the upper halfplane. Then∫

LR

f(z) dz =

∫ R

−R

x2

(x2 + 1)2
dx.

Next we estimate∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ ≤ sup
z∈ΓR

∣∣f(z)∣∣ · Length(ΓR) (ML estimate),

= sup
z∈ΓR

∣∣∣∣ z2

(z2 + 1)2

∣∣∣∣ · 2πR
≤ R2

(R2 − 1)2
· 2πR (note it’s R2 − 1, not R2 + 1,)

R→∞−−−→ 0.

So letting R → ∞ and combining these calculations gives∫ ∞

−∞

x2

(x2 + 1)2
dx = lim

R→∞

(∫
∂DR

f(z) dz −
∫
∂ΓR

f(z) dz

)
=

π

2
.

Problem 4. (10 points) For each of the following functions, describe
the Taylor series expansion about the indicated point, and compute
the radius of convergence.

Math 1260 Final Exam Fri, Dec 20, 2013 — 2–5pm



Math 1260— Solutions for Final Exam Page 6

(a) f(z) = log(z) centered at z0 = 2.

(b) f(z) =
1

(1− z)2
centered at z0 = 0.

Solution. In general the Taylor series expansion of f(z) centered at a
is

∞∑
k=0

f (k)(a)

k!
(z − a)k.

Each part of this problem can be done by computing the derivatives
at the indicated point. Alternatively, one can use related series and
differentiate or integrate them.
(a) We have f ′(z) = 1

z
, so

f ′(z) =
1

z
=

1

2 + (z − 2)
=

1

2
· 1

1 + z−2
2

.

Now we can expand using the geometric series to get

f ′(z) =
1

2

∞∑
k=0

(−1)k
(
z − 2

2

)k

=
∞∑
k=0

(−1)k

2k+1
(z − 2)k.

Integrating gives

f(z) =
∞∑
k=0

(−1)k

(k + 1)2k+1
(z − 2)k+1 + C.

The constant is obtained by setting z = 2, so log(2) = f(2) = C.
Finally, relabeling, we get

f(z) = log(z) = log(2) +
∞∑
k=1

(−1)k+1

k2k
(z − 2)k.

The radius of convergence ρ may be computed using the ratio test or
the root test. The latter gives

ρ−1 = lim
k→∞

∣∣∣∣(−1)k+1

k2k

∣∣∣∣1/k = lim
k→∞

1

2k1/k
=

1

2
,

so ρ = 2.
(b) Again, it’s not very hard to compute the derivatives. But even
easier to note that f(z) is the derivative of 1

1−z
, which is just a geometric

series. So

f(z) =
d

dz

(
1

1− z

)
=

d

dz

∞∑
k=0

zk =
∞∑
k=1

kzk−1 =
∞∑
k=0

(k − 1)zk.
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The radius of convergence is

ρ = lim
k→∞

1

(k − 1)1/k
= 1.

Problem 5. (10 points) Let

f(z) =
1

z2 − 2z
.

(a) Find the Laurent series of f(z) centered at 0 in the domain |z| < 2.
(b) Find the Laurent series of f(z) centered at 0 in the domain |z| > 2.

Solution. (a) We note that f(z) has a pole at z = 0, but that’s okay.
The partial fraction expansion of f(z) is

f(z) =
1/2

z − 2
− 1/2

z
.

We leave the second term alone and expand the first using the geometric
series

1/2

z − 2
= −1

4
· 1

1− z
2

= −1

4

∞∑
n=0

(z
2

)n

=
∞∑
n=0

−1

2n+2
zn.

This converges on |z| < 2. Further, if we also include n = −1, we get
the other term, so the Laurent series of f on the domain |z| < 2 is

f(z) =
∞∑

n=−1

−1

2n+2
zn.

(b) For |z| > 2, we want an expansion in the variable 1/z, so

1/2

z − 2
=

1

2z
· 1

1− 2
z

=
1

2z

∞∑
n=0

(
2

z

)n

=
∞∑
n=0

2n−1

zn+1
=

∞∑
n=1

2n−2

zn
.

This gives

f(z) = − 1

2z
+

∞∑
n=1

2n−2

zn
.

We can simplify by noting that the n = 1 term cancels the −1/2z, so

f(z) =
∞∑
n=2

2n−2

zn
.

Problem 6. (15 points) Let D be a bounded domain with nice bound-
ary.
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(a) Suppose that f(z) is analytic on D, continuous on D ∪ ∂D, and
does not vanish on D ∪ ∂D. Let

m = inf
z∈∂D

∣∣f(z)∣∣
be the smallest value of

∣∣f(z)∣∣ on the boundary of D. Prove that∣∣f(z)∣∣ ≥ m for all z ∈ D.

(This is a minimum principle that complements the maximum
principle.)

Problem 6. (continued)

(b) LetD be the unit disk. Find a function that is analytic onD ∪ ∂D
and satisfies f(0) = 0, and such that f does not satisfy the mini-
mum principle.

(c) Suppose that f(z) is analytic and non-constant on D and con-
tinuous on D ∪ ∂D. Assume further that

∣∣f(z)∣∣ is constant for
z ∈ ∂D. Prove that f(z) must have a zero in D.

Solution. (a) For any function h, we write

M(h) = sup
z∈∂D

∣∣h(z)∣∣ and m(h) = inf
z∈∂D

∣∣h(z)∣∣.
Since f(z) does not vanish onD, we know that g(z) = 1/f(z) is analytic
on D. So we can apply the maximum principle to g(z) to conclude that∣∣g(z)∣∣ ≤ M(g) for all z ∈ D.

Since g = 1/f , this implies that

1∣∣f(z)∣∣ ≤ M(1/f) for all z ∈ D.

But if T is any set of positive real numbers, we have

sup

{
1

t
: t ∈ T

}
=

1

inf{t : t ∈ T}
.

This implies that M(1/f) = 1/m(f). Substituting this in above gives

m(f) ≤
∣∣f(z)∣∣ for all z ∈ D.

(b) The simplest example is f(z) = z. Then m(f) = 1, but
∣∣f(z)∣∣ is

not larger than m(f). In fact, we have
∣∣f(z)∣∣ < m(f) for all z in the

unit circle.
(c) The maximum principle says that∣∣f(z)∣∣ ≤ M(f) for all z ∈ D.
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Suppose that f does not vanish. Then the minimum principle (proven
in (a)) says that ∣∣f(z)∣∣ ≥ m(f) for all z ∈ D.

However, we’re given that
∣∣f(z)∣∣ is constant for z ∈ ∂D, so m(f) =

M(f) directly from the definitions of m(f) and M(f). So our two
inequalities imply that∣∣f(z)∣∣ = M(f) = m(f) for all z ∈ D.

In particular, there are points z ∈ D for which
∣∣f(z)∣∣ = M(f), so the

other half of the maximum principle tells us that f is constant.

Problem 7. (10 points) Let f(z) be the polynomial

f(z) = z4 + 5z + 1.

(a) Prove that f(z) has exactly one root inside the disk |z| < 1.

(b) How many roots does f(z) have inside the annulus 1 < |z| < 2?
Prove that your answer is correct.

Solution. (a) For |z| = 1 we have

|5z| = 5 ≥ 2 = |z4|+ 1 ≥ |z4 + 1|.

So from Rouché’s theorem, the polynomial f(z) and the polynomial 5z
have the same number of zeros in the disk |z| < 1. Since 5z clearly has
one zero in the disk, so does f(z).
(b) On the circle |z| = 2 we have

|z4| = 16 ≥ 6 = |5z|+ 1 ≥ |5z + 1|,

so f(z) and z4 have the same number of zeros in the disk |z| < 2. Since
z4 has four zeros (counted with mulitplicity), so does f(z). That’s the
number of zeros in the disk |z| < 2, and we know from (a) that there
is one zero in the disk |z| < 1, so f(z) has three zeros in the annulus
1 < |z| < 2.

Problem 8. (10 points) Let f(z) be analytic in a domain D, and
suppose that f satisfies

Re
(
f(z)

)
= Im

(
f(z)

)
for all z ∈ D.

Prove that f is constant in D.
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Solution. There are probably lots of ways to do this problem. Here’s
one. Write f(z) = u(x, y) + iv(x, y) as usual. The assumption that
Re

(
f(z)

)
= Im

(
f(z)

)
says that

u(x, y) = v(x, y).

Now the Cauchy–Riemann equations yield

∂u

∂x
=

∂v

∂y
(Cauchy–Riemann equation)

=
∂u

∂y
(since v = u)

= −∂v

∂x
(Cauchy–Riemann equation)

= −∂u

∂x
(since v = u).

It follows that
∂u

∂x
= 0.

A similar calculation gives
∂u

∂y
= 0.

Alternatively, we can use ux = 0 and compute

0 =
∂u

∂x
=

∂v

∂y
=

∂u

∂y
.

Thus ux = 0 and uy = 0, which implies that u is a constant. And since
v = u, we find that f = u+ iv is also a constant.

Problem 9. (10 points) Proe that there exists a function f(z) with
the following properties:

• f(z) is meromorphic on C.
• f(z) has simple poles at the points {1, 2, 3, 4, . . .} and no other
poles.

• For k ∈ {1, 2, 3, . . .}, the residue of f(z) at k is equal to k.
Be sure to prove that the function that you define is meromorphic, as
well as having the indicated poles and residues.

Solution. We’d like to use
∞∑
k=1

k

z − k
,
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but it doesn’t converge. The function k/(z − k) looks like −1 when k
is large, so we might try summing

k

z − k
+ 1 =

z

z − k
.

But z/(z−k) looks like−z/k when k is large, so its sum won’t converge,
either. So we add on z/k to compensate,

k

z − k
+ 1 +

z

k
=

z

z − k
+

z

k
=

z2

(z − k)k
.

Note that this calculation shows that z2/((z−k)k has a simple pole at
z = k with residue k.

Then we define

f(z) =
∞∑
k=1

(
k

z − k
− 1− z

k

)
=

∞∑
k=1

z2

(z − k)k
.

The usual argument shows that f is meromorphic with the correct
poles. We briefly indicate. Choose any R (not an integer) and break
up f as

f(z) = f1(z) + f2(z) =
∑
k<2R

z2

(z − k)k
+

∑
k>2R

z2

(z − k)k
.

Let DR = {|z| < R} be a disk of radius R. Then f1(z) is meromorphic
on DR with simples poles at the integers k < R and residue k at k. On
the other hand, for z ∈ DR and k > 2R we have∣∣∣∣ z2

(z − k)k

∣∣∣∣ ≤ R2

(k −R)k
,

so ∑
k>2R

∣∣∣∣ z2

(z − k)k

∣∣∣∣ ≤ ∑
k>2R

R2

(k −R)k
< ∞.

The Weierstrass M -test implies that the series defining f2(z) converges
to an analytic function on DR. Hence f(z) is meromorphic on DR with
the desired poles and residues at {k < R}. Since R is arbitrary, this
shows that f(z) is entire with the desired poles and residues.

Problem 10. (10 points) Let f(z) be an analytic function that maps
the unit disk conformally to a domain D. In other words, if we denote
the unit disk by D =

{
|z| < 1

}
, then

f : D −→ D is analytic, one-to-one, and onto.

Also let
m = inf

w∈∂D

∣∣f(0)− w
∣∣
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be the distance from f(0) to the boundary of D. Prove that∣∣f ′(0)
∣∣ ≥ m.

(Hint. Consider the inverse function f−1 : D −→ D, note that the disk
around f(0) of radius m is contained in D, and use Schwarz’s lemma.)

Solution. We consider the inverse function

f−1 : D −→ D.
Our choice of m tells us that the disk

B =
{
w ∈ C :

∣∣f(0)− w
∣∣ < m

}
is contained in D, so f−1 is analytic on B; and since the image of f−1

is in D, we know that∣∣f−1(w)
∣∣ ≤ 1 for all w ∈ D.

We want to shift B to be the unit disk. The map z 7→ mz + f(0) send
the unit disk to B, so we should look at the function

g(z) = f−1
(
mz + f(0))

)
.

Then g : D → D with g(0) = 0, so the derivative version of Schwarz’s
lemma says that

∣∣g′(0)∣∣ ≤ 1. Note that

g′(0) = (f−1)′
(
f(0)

)
m.

So we find that ∣∣(f−1)′
(
f(0)

)∣∣ ≤ 1

m
.

Okay, now we differentiate the identity

f−1
(
f(z)

)
= z

to get
(f−1)′

(
f(z)

)
· f ′(z) = 1.

Evaluating at z = 0 gives

(f−1)′
(
f(0)

)
· f ′(0) = 1.

So

(f−1)′
(
f(0)

)
=

1

f ′(0)
,

and substituting this above gives∣∣∣∣ 1

f ′(0)

∣∣∣∣ ≤ 1

m
.

Cross-multipying gives
m ≤

∣∣f ′(0)
∣∣,

which is the desired result.
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Problem 11. (10 points) Compute the value of the integrals∫ ∞

0

cos(x2) dx and

∫ ∞

0

sin(x2) dx

Hint #1. Integrate the function f(z) = eiz
2
around the boundary of

the region

DR =
{
reiθ : 0 < r < R and 0 < θ <

π

4

}
.

Hint #2. The following integral from 3rd semester calculus may be
useful: ∫ ∞

0

e−t2 dt =

√
π

2
.

Warning . Don’t spend too much time on this problem until you’ve
worked on the other problems.

Solution. The function f(z) = eiz
2
is entire, so Cauchy’s theorem tells

us that ∫
∂DR

f(z) dz = 0.

The boundary of DR consists of 3 pieces:

L1 = {x : 0 ≤ x ≤ R},

L2 = {t
√
i : 0 ≤ t ≤ R} (in reverse direction),

ΓR = {Reiθ : 0 ≤ θ ≤ π/4}.

Here
√
i is the square root in the first quadrant, i.e.,

√
i = 1+i√

2
.

The integral along L1 gives the integrals that we’re trying to com-
pute,∫

L1

f(z) dz =

∫ R

0

eix
2

dx =

∫ R

0

cos(x2) dx+ i

∫ R

0

sin(x2) dx.

For L2, we have ∫
L2

f(z) dz =

∫ 0

R

ei(
√
it)2 d

(√
it
)

= −
√
i

∫ R

0

e−t2 dt

= −1 + i√
2

∫ R

0

e−t2 dt.
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Hence

lim
R→∞

∫
L2

f(z) dz = −1 + i√
2

∫ ∞

0

e−t2 dt = −1 + i√
2

·
√
π

2
.

Finally, for ΓR we use Jordan’s lemma, which says that if CR is the
semicircle of radius R in the upper halfplane, then∫

CR

|eiz| |dz| < π.

Our curve ΓR is not equal to CR. By making the change of variables
w = z4, we could map ΓR to CR, but then we wouldn’t get the integral
in Jordan’s Lemma. So instead we use the change of variables w = z2,
which maps ΓR to the quarter-circle

BR = {Reiθ : 0 ≤ θ ≤ π/2}.

Then ∫
ΓR

f(z) dz =

∫
BR

f(w1/2) d(w1/2)

=

∫
BR

eiw
dw

2w1/2
.

Hence ∣∣∣∣∫
ΓR

f(z) dz

∣∣∣∣ = ∣∣∣∣∫
BR

eiw
dw

2w1/2

∣∣∣∣
≤

∫
BR

|eiw| |dw|
2|w1/2|

=
1

2R1/2

∫
BR

|eiw||dw|.

In order to use Jordan’s lemma, we note that CR is the union of the
quarter-circle BR and the quarter-circle B′

R = {−z : z ∈ BR}. In
other words, the map z → −z maps BR to B′

R. We also note that if
z = x+ iy ∈ BR, then −z = −x+ iy, so

|e−zi| = |e(−x+iy)i| = |e−y−ix| = e−y = |e(x+iy)i| = |ezi|,

and similarly

|d(−z)| = |dz|,
so ∫

BR

|eiz| |dz| =
∫
B′

R

|eiz| |dz|.
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